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ABSTRACT 

The stability of a simply supported rod which is subjected to a random longi- 
tudinal force is studied in this report. The concepts of moment stability and sample 
stability are defined and their interrelationships a re  studied by way of a series of 
examples. These definitions a r e  then applied to the rod deflection stability problem 
and sufficient conditions for second moment stability a r e  determined for three types 
of random longitudinal force: Gaussian white noise, a narrow band noise, and a 
Gaussian noise with a general power spectral density function satisfying certain con- 
ditions. It is then shown that the conditions derived for second moment stability 
actually yield sample stability. A discussion of sample stability and second moment 
stability for a first order system and some interesting results concerning the stabiliza- 
tion of an inverted pendulum by subjecting its bits0 to a random vertical displacement 
a r e  presented in the appendices. 
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1. INTRODUCTION 

The study of stability of stochastic dynamical systems appears to have 
originated in the basic work of Andronov, Pontryagin and Witt [l], that appeared 
in the early 1930's. Since that time, due to the increase in the use of stochastic 
formulations of general system dynamics , the study of system stability from a 
stochastic point of view has played an increasingly important role. 

The question of stability (instability) in the transverse direction of a simply 
supported uniform plate which is subjected to a stochastically time varying uniformly 
distributed end load, has been considered recently by Lomen et al. 
studies, the authors consider a type of stability which Eringen and Samuels [3] and 
Samuels [4, 51 refer to as mean square stability. The stability of the plate is 
defined in terms of the second moment of its deflection and explicit results for the 
case of Gaussian white noise are presented. Their method of attack is based upon 
the technique of separation 6f variables and associated decoupled integral equations, 
thereby avoiding the pathological properties of Gaussian white noise. 

[2]. In these 

However, for real  engineering problems, it is reasonably well accepted 
that almost-sure sample stability is the goal to achieve, since we desire as many 
sure (i. e . ,  probability one) facts about the operation of the real system as can be 
obtained. Unfortunately, sample properties a r e  the most difficult to ascertain in 
the study of stochastic systems; therefore, the studies devoted to this most 
deterministic form of stability have lagged somewhat behind relative to the easier 
to establish stability in the mean. For discrete systems, both Kalman 161 and 
Bharucha [7] have obtained results on almost-sure stability. Among the first results 
in the USA for continuous systems can be seen in reference [8]. m r t h e r  results may 
be found in references [9] through [15]. 

Both Bharucha and Kalman noticed a connection between exponential stability 
of the mean square and almost-sure sample stability for discrete systems. Similar 
relations are established in reference [9], under slightly different conditions, for 
continuous systems, and under somewhat more relaxed conditions for diffusion 
processes in reference [lo]. These results a r e  applied in section 4.2 of this report. 

Since moments often can be obtained o r  approximated, it is desirable to 
determine and use any implications in moment properties that exist for almost-sure 
stability. The examples presented in section 3 point out that one must seriously stop 
and consider what one is accepting from instability, or stability, in the mean and 
mean square as it relates to actual physical systems. The implication is that only 
almost-sure sample stability can ever be of significance in the study of stochastic 
models of real systems. If this "deterministic" stability property can be inferred 
from simply determined mean properties, so much the better. If not, the studies 
should proceed until sample stability properties a re  established. Otherwise, the 
stability of the system can be considered as unknown. 
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The purpose of this study is to apply the concepts of stochastic stability to 
a practical engineering problem. To this end, the examples of section 3 play a 
major role since they tend to unify the subject and smooth the engineer's way 
through the "terminology barrier" of stochastic stability. 

The basic equations which describe the dynamic response of a simply 
supported rod subjected to a random longitudinal force are derived in section 2.  
In section 3 the reader is introduced to the idea of stochastic stability; the concepts 
of moment stability and sample stability are defined and their interrelationships 
are exhibited by way of a series of examples. The definitions of section 3 are 
applied in section 4 to the problem of the stability of the simply supported rod pre- 
sented in section 2. The various analyses of section 4 are classified according to 
the type of stability they yield and to the type of stochastic longitudinal force used. 
A further discussion of sample stability and second moment stability for a first 
order system is included in appendix A and some interesting results concerning the 
stabilization of an inverted pendulum by subjecting its base to a random vertical 
displacement a re  presented in appendix B. 
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2. FUNDAMENTAL EQUATIONS 

2 . 1  Definition of the Problem 

For nearly a decade, the principal applications of random vibration theory 
have been to vehicles, with particular emphasis on missiles, satellites, and space 
vehicles. General and theoretical aspects of random vibration, the excitations and 
responses of flexible space vehiole systems, and the practical problems of data 
acquisition, establishment of specifications, test equipment, and test procedures a re  
well defined. Analyses that have been conducted , generally include restrictive 
assumptions such as the neglect of the dynamic stability of the system (the character- 
istics of which are changing in a random manner). When proceeding in this manner, 
it is possible to miss  completely the real dynamic description of the configuration. 

Consider the problem (see figure 2-1) of the transverse vibrations of a straight 
rod loaded by a randomly time varying uniform longitudinal force. The rod is assumed 
to be simply supported and of uniform cross section along its length. We will make 
the usual assumptions in the field of strength of materials; viz. , that Hookel s law holds 
and that plane sections remain plane. We shall investigate the behavior of the trans- 
verse deflection of the rod to see if it remains stable in some probabilistic sense. 
This problem is  one of the simplest nontrivial problems of the stability of stochastic 
systems. 

Figure 2-1. Rod Geometry 

2.2 Differential Equation of the Problem 

We will proceed from the well known equation of the static bending of a rod 

2 

ax 

a w  
E1 - + P w = M  (2.1) 2 
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where w(x, t) is the deflection of the rod, E1 is its bending stiffness, and P is the 
longitudinal force. M is the bending moment resulting from the transverse forces. 
Since we are  interested in the stability problem associated with stochastic end forces 
and not the forced vibration problem, we will consider the transverse forces to be zero. 
With this in mind (2.1) becomes, after two differentiations, 

This gives the condition that the sum of the y components of all forces per unit length 
acting on the rod is in equilibrium. 

To arrive at the equation for the transverse vibrations of a rod loaded by the 
longitudinal force 

P(t) = Po f 9 (t), (2.3) 

where PO is a constant longitudinal force and 9 (t) is  a mean zero stochastic process, 
it is necessary to introduce additional terms into (2.2) that take into account the 
inertial forces. 

A s  in the case of the applied theory of vibrations, we will not include the 
inertial forces associated with the rotation of the cross sections of the rod with respect 
to its own principal axes. The influence of longitudinal inertial forces are considered 
negligible. Note that longitudinal inertial forces can substantially influence the dynamic 
stability of a rod only in the case where the frequency of the external force is near 
the longitudinal natural frequencies of the rod (i. e. , when the longitudinal vibrations 
have a resonant character). 

With these limiting assumptions, the inertial forces acting on the rod can be 
reduced to a distributed loading whose magnitude is 

2 a w  -m 
a t 2  

where m is the mass per unit length of the rod. Thus, we arrive at the differential 
equation 

2 2 
a w  = o  a w  

ax: a t 2  

4 a w  

a x  
E1 - + (Po + WH 2 + m  4 

4 



2 . 3  Reduction to a System of Ordinary Differential Equations 

We shall seek the solution of (2 .5)  in the form 

m 

where fn(t) are functions of time to be determined and 4 is the length of the rod. One 
easily sees that the expression (2 .6)  satisfies the boundary conditions of the problem 
requiring in the given case that the deflection, together with its second derivative, 
vanish at the ends of the rod. It should be noted that the fqcoordinate functions" 

are of the same form as  that of the free vibrations and of the buckling of a simply 
supported rod. 

Substituting expression (2 .6)  into (2 .5)  gives 

m 

(2 .7 )  

where the dots denote differentiation with respect to time. 

For expression (2 .6)  to satisfy (2 .5) ,  it is necessary and sufficient that the 
quantity in brackets should vanish at any t. In other words, the functions fn(t) must 
satisfy the differential equation 

If we define the nth frequency of free vibrations of the unloaded rod and the nth Euler 
buckling load respectively as 

(2 .9)  

(2.10) 
2 

- ( ",", E1 P - -  
* 

n 
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and restrict ourselves here to a consideration of the effect of structural damping 
where, more precisely, we will consider resistance force8 which introduce into 
(2.8) an additional term containing a first derivative of fn(t) with respect to time, 
then (2.8) becomes 

(2.11) 

The structural damping coefficients Rn,n= 1,2,  . . . are  to be determined experimentally 
for each case. 

For convenience we write equation (2.11) in the form 

where 

Q = w  
n n 

n 
, 

* - - 

Po -P  "'n 
n 

(2.12) 

(2.13) 

(2.14) 

and gn is the frequency of the free vibrations of the rod loaded by a constant longitudinal 
force P 

0' 
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3 .  CONCEPTS OF STOCHASTIC STABILITY 

3.  1 Introduction to Stochastic Stability 

The engineer considers the stability of a system to be one of the foremost 
properties of importance in design. We must, in some way, be assured that a 
system will operate in a safe mode under a family of conditions that are preselected 
as representing the system's environment. Ideally, the system is well designed if 
variations in the environment have no effect on the operational mode of the system. 
More realistically, any change in the mode of operation caused by changes in the 
environment should die out a s  rapidly as possible with the system then returning 
smoothly to i ts  desired mode of operation. This is, generally, what our 
intuition tells us when we consider the concept of stability in a practical sense. 
We then say that the mode of operation of the system is stable. 

The engineering procedure for examining the stability of a system is to 
construct a mathematical model which quite often is a simultaneous set of 
differential equations -- ordinary o r  partial, linear o r  nonlinear, with fixed o r  
time varying coefficients. The dependent variables represent the states of the 
system and the nature of the environment is reflected in the coefficients and 
inputs. The stability of the system is then determined in terms of the values (time 
varying o r  not) of the coefficients and inputs. Various analytical techniques have 
been derived to study the system stability when the coefficient parameters are 
fixed with time, slowly time varying, periodically time varying, and randomly 
time varying. 

When a system design depends upon selecting a specific set of component 
parameters which are fixed for all time, stability can then be determined by a 
variety of very powerful classical techniques; Nyquist Diagrams, Root-Locus 
methods, Routh-Hurwitz criteria, and more recently the extensively studied 
second method of Liapunov, are all powerful tools that are available to the engi- 
neer for the study of system stability. 
studying systems that have fixed or  time varying parameters when the values of 
the parameters o r  the nature of their time variation is known. 

These techniques a re  all directed towards 

In many cases, however, the parameters vary in some fashion unknown to 
the engineer. A s  we all know, environments are hardly predictable, and as is 
becoming more accepted, statistioal models of environmental conditions are the 
only fashion in which we  can adequately describe the parameters that characterize 
the environment. We are led then to a system model consisting of a set of 
simultaneous differential equations with randomly time varying parameters and 
inputs. In this report we will be interested in homogeneous systems, i. e . ,  the 
differential equations will have no right hand side terms. The differential equations 
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used will  model a simply supported rod of uniform cross section and various 
statistical models of the longitudinal force, the environment, will be considered. 
It should be noted that transverse forces on the rod will not be considered since 
this leads to right hand side terms. 

Basically, a statistical model of an environment is a collection of functions 
of time where each function describes a possible (or sample) environmental vari- 
ation. The average o r  statistical properties of this collection of time functions 
are governed by joint probability distributions. Usually, only the probability 
distributions, o r  perhaps the spectral density and second moments, of a 
statistical model are specified, In any case, the sample variations are subordi- 
nated in most engineering applications. For a given experiment performed on 
the system, the variation of the environment will lead to a sample variation of the 
parameters in the differential equation model. Thus a statistical model of the 
system will consist of a collection of sets of differential equations -- one set for  
each sample variation of the parameters. Now, the natural question the engi- 
neer must ask is what meaning shall he put to the concept of stability as applied 
to a collection of sets of equations, each with a different set of time varying 
parameters, when the entire collection of sets of time varying parameters 
possesses a prescribed set  of joint probability distributions ? The engineer can 
look at  this problem in two ways -- not unrelated to one another. 

In one case, the engineer recognizes that the response of the system, given 
by the solutions of the differential equations, one solution for each sample variation 
of the parameters, possesses probability distributions that are generated by the 
probability distributions of the parameters. Hence, the system response is a 
random process that possesses average properties. 

Thus, given a suitable definition of stability, we may ask that the system 
be stable in some average sense where the averaging takes place over all sample 
solutions of the differential equations. For example, we may want the second 
moments of the system state vector to approach zero asymptotically. This does 
not tell us what happens in the case of each sample system, but instead, gives us 
an average response obtained by "watching" all sets of differential equations. 

Another possibility, and perhaps the most desirable, is to say that the 
set of differential equations will be stable in the ordinary deterministic sense for 
every possible sample variation of the parameters. 
matter what the given environmental variation is,  within the given statistical 
model of the environment, the system is stable. 
require that we analyze each sample deterministically by classical techniques. 
Since there a r e  an infinity of possible environmental variations for any given 
random model, it is clear that this would be an impossible task to carry out. 

Thus we would know that no 

On the surface, this would 
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Fortunately, a s  we  shall see later, one can make statements about every sample 
solution of the set of differential equations on the basis of certain average 
properties of these solutions. This will be taken up in detail in section 4. In 
order to make precise the ideas that we have described above, we shall define 
various types of deterministic and stochastic stability and examine their 
interrelationships by way of examples. In these definitions we will be interested 
primarily in the linear systems 

x = A(t)x, x(t ) = x M to< t (3 .1)  0 0’ 

and 

where x is an n-state vector, A(t) is an nxn matrix whose elements are constants 
and/or known functions of time, and F(t) is an nxn matrix whose elements are 
constants and/or stochastic processes, It should be noted that definitions 3 . 1 ,  
3 . 3 ,  and 3 . 5  are actually general definitions of stability which also apply to 
nonlinear systems. 

The definitions of moment stability and almost sure sample stability are 
simple translations of the deterministic definitions of stability. 
concept of deterministic stability for  linear systems is a s  follows: 

The precise 

Definition 3 .1 .  Stability of a Linear System 

The equilibrium state solution x 3 0 of the system (3 .1)  is said to be stable 
if given an arbitrary E > 0, a 6 2 0 can be found such that when the initial condition 
satisfies I Ix I I < 6  , it follows that 

0 
* 

0 for all t2 t (3 .3)  

Simply stated, this definition says that if the system is perturbed less,  
then it will move less. 
state at the bottom of a spherical bowl and if the particle is perturbed by smaller 
initial disturbances, then the distance it moves from its rest position will be 
smaller in magnitude. Notice that if  the particle was  at rest at the top of a sphere, 

Thus if we imagine a particle resting in i ts  equilibrium 

*The notation x(t;xo, to) denotes the solution of (3.1) with initial condition xo at time 

to and I I 1 denotes a suitable norm. 
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any disturbance no matter how small will cause large motions of the particle from 
its initial position. 
unstable equilibrium state of a system, 

This is the conceptual distinction between a stable and an 
c 

Definition 3.2. Asymptotic Stability of a Linear System 

The equilibrium state solution x 5 0 of the system (3.1) is said to be 
asymptotically stable if no matter what the initial condition x is, i t  follows that 0 

This definition, for linear systems, implies that small disturbances yield 
small motions, but more than that, (3.4) implies that all disturbances die out. 
Thus, in the example of a particle in the bottom of a spherical bowl, the particle 
will eventually return to its initial position. This is the distinction between 
stability and asymptotic stability. Analytically, we can think of the ordinary 
undamped oscillation and the damped oscillation as examples possessing respec- 
tively a stable equilibrium solution and an asymptotically stable equilibrium 
solution. 

The stochastic analogies to deterministic stability can now be stated quite 
easily . 

t 
In this report we will be primarily interested in the stability of a second order 
differential equation for which the equilibrium state is the origin, i. e., zero 
position and velocity. 

10 



3 . 2  Moment Stability 

Definition 3.3. Stability of the Second Moments for Linear Stochastic Systems 

The equilibrium state solution x I 0 of the system (3.2) possesses stability 
of the second moments if given s>O, there exists a 6 >  0 such that for 11 xo I \ <  6 ,  it 
follows that 

0 
for all t 2 t 

2 2 2 
1 2 n We have used the norm 1Ix 1 1  = x + x + . . . +x where 

. . . , x are  the components of the vector x. 
X1’ X2’ n 

Definition 3.4 Asymptotic Stability of the Second Moments for Linear 
Stochastic Systems 

The equilibrium state solution x = 0 of the linear stochastic system (3 .2)  

0’ possesses asymptotic stability of the second moments if for any x 

(3.5) 

Since moments a re  relatively easy to determine, these definitions of stochastic 
stability can be tested analytically in many engineering applications of importance. 
However, in order to test  for moment stability in the laboratory, one would have to 
operate the system for a large number of runs to obtain a collection of sample responses. 
Then the average properties of the norms of all the runs would have to be calculated 
in order to determine what is happening to the second moments. Notice that much 
information about the characteristics of the individual runs is lost during the averaging 
procedure so that stability of the second moments will  not necessarily tell us whether 
any given run is stable in the deterministic sense. 

Let us consider a few simple examples of first order stochastic systems that 
will help illustrate some of the definitions above. 

Example I. 

Consider the simple first order system 

2 x + a x = O  (3.7) 

11 



where a is a Gaussian random variable with zero mean and unit variance. The density 
function for a is 2 a - -  

e2 /S 

The solution process for an arbitrary initial condition x 0 at  to = 0 is 
n 

and the second moment of the solution process is 

2 2 a  2 
X 

- 

- K i -m e-2a t-2 
2 

X 
- -  O - o as  t+m - 

2/4t+l 

Here, we see that this trivial system possesses an equilibrium 

da 

(3.9) 0' for any x 

solution that has 
asymptotically stable second moments. Indeed we notice that, except for a =  0 
which occurs with probability zero, all sample solutions approach zero asympto- 
tically a s  shown in the following graph 

2 
xoema + 

t .2= 0 

Figure 3-1. Sample Solutions of Equation (3.7) 

12 



Example 11. 

Let us now consider a similar situation for the system 

2 4 + ( a + k ) x  = 0 

where k is some fixed but arbitrary constant and a is the random variable of 
example I. 

The solution process is 
n 

The second moments here behave a s  
9 

E 
2 2 -2kat E ( x  (t)) = xoe 

(3.10) 

(3.11) 

2 2  (3.12) 
-2k f2t+ m as  t+co for any x and any k = x e  

0 0 

Therefore, the system (3.10) possesses unstable second moments. W e  wish 
to s t ress  that the moments a re  unstable for any k. But, suppose we look at the sample 
solutions 

(3.13) 

2 2 Obviously, if a + k > 0 or  a > -k the samples will be asymptotically stable a s  solutions 
to the differential equation (3.10). But, notice that we can choose k large enough so that 
P ( a  C -k2) is a s  small a s  we please. This means that even though the ratio of asympto- 
tically stable solutions to unstable solutions is very large, the moments will still blow up. 
In fact, one can show examples for which all solutions a r e  stable and yet the moments 
approach infinity. This is one of the anomalies of using moment properites for the defini- 
tion of stability. One more situation that can occur is given by the following example. 

Example 111. 

Let us consider the system 

k + [p + w (t)] x = 0 (3.14) 
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where W(t) is the Gaussian white noise with mean zero and 

E {W(t) w(t+T)) = SW6(") (3.15) 

th n 
It is shown in .appendix A, equation (A-19), that the n moment E {x (t)\ 

of the solution process {x(t), te [0, -)I satisfies the differential equation 

mn(t) 

sW 
m (t) +[nB--n (n-1) j  mn(t) = 0 n 2 

Therefore, 

(3.16) 

~ Thus for n=2, B>(1/2)Sw implies asymptotic stability of the second moment. But for 

n=4, 8>(3/2)Sw yields asymptotic stability of the fourth moment. Hence for 

(1/2)% <8<(3/2)b  the system possesses unstable fourth moments and asymptotically 

stable second moments. Therefore, the engineer can with all justification question 
what the stability of a moment means to him. 

Example IV. 

It is not necessary to use the Gaussian white noise to obtain the results of 
example III. To illustrate this consider the following system which is similar to (3.14) 

ic + [B 4- f(t)]x = 0 (3.17) 

where f(t) is a zero mean stationary ergodic Gaussian stochastic process with a known 
covariance I' (7). The solution to (3.17) is 

f 

x(t) = x e (3.18) 0 

t 
0 and if we  let F(t) = B t + $  f(7) d7 then F(t) is a Gaussian process with 

(3.19) 
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th n The n moment E {x (t) 1 of the solution process { x(t), tc  [O, w) 1 can be com- 
puted directly from (3.18). 

2 2  n -43t+ap (t)n /2  
= x e  

0 

Now, for example, consider the covariance 

Substituting (3.21) into (3.19) and integrating gives 

2 2 -t 
0 (t) = 2 0  [ t + e  -13 F 

th 
which when substituted into (3.20) yields the n moment 

2 2 2 -t n n - ( 8 - n o ) n t + n o  (e -1) E {X (t)) = x0 e 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

th The necessary and sufficient condition for asymptotic stability of the n moment 
2 2 2 is B > no so for 2 0  < ,9 < 40 the system possesses unstable fourth moments and 

asymptotically stable second moments. Compare this result with that of example III. 

We have seen with these simple examples that the moments can take on quite 
different asymptotic properties and yet, when we have one or the other of the pro- 
perties holding, we a re  still not quite sure what we have obtained relative to a real 
system. Indeed it may happen that a well-behaved system possesses no moments 
at all ! ! This is illustrated by the next example. 

Example V. 

Consider the system 

* 2 
x - a x = O  (3.24) 

15 



where a is the Gaussian random variable a s  defined in example I. 
cess as  defined by the system (3.24) is 

The solution pro- 

2 a t  {x(t) = x e , t e [0 ,= )1  (3.25) 0 

Each sample solution is well  behaved although they do increase exponentially. 
But, the second moments possess a very strange property a s  we now see. 

2 2 =  2 a  xo I 2a t-- - z da - -  - l e  - (3.26) 

For 2t> 1/2 or  t>  1/4 the second moment ceases to exist. Indeed for t >  1/2 all moments 
cease to exist. 

Once more we see that the properties of the sample solutions are  not well 
reflected by the properties of the moments. Hence, we again question the significance 
of describing the stability properties of a stochastic system by properties of the moments. 

But, we shall not abandon the study of moment properties for, a s  we shall 
see later, under certain conditions they do yield significant stability properties. 
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3 . 3  Sample Stability 

W e  have indicated that stability in some average sense, say stability of the 
moments, may not be useful in studying stochastic systems. The question is, what 
kind of stability property shall we study for stochastic systems that will be useful 
from the engineer's point of view? 

The most desirable property that we could ask for is stability in a determinis- 
tic sense. This is not possible, however, for stochastic systems, but almost sure 
stability or, equivalently, stability with probability one is the closest stochastic analog 
to deterministic stability. This essentially means that every time we turn the system 
on, it is stable. The following definitions describe the type of stability that we are  
referring to. 

Definition 3.5.  Almost Sure Sample Stability for Linear Stochastic Systems. 

The equilibrium state solution x 3 0 of the linear stochastic system (3 .2)  is 
said to be almost surely sample stable if 

Prob {given e > 0, there exists 6 > 0 such that 1 1  xoll < 6 

(3.27) 

A definition equivalent to (3.27), which is commonly used and is the analog of defini- 
tion (3. l), is the following: If, given e,  e'> 0, there exists a 6 > 0 such that 

then the equilibrium state solution of (3 .2)  is almost surely sample stable. 

Definition 3.6.  Almost Sure Asymptotic Sample Stability for Linear Stochastic 
Sys tems. 

The equilibrium state solution x E 0 of a linear stochastic system is said to be 
almost surely as.ymptotically sample stable if 

(3.28) 

A simple example will illustrate the "almost sure" nature of these definitions. 
Consider the first order differential equation k = ax with initial condition x(0) = xo 
where the parameter a is a uniformly distributed random variable on the interval 
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-1 5 a 5 0. The sample solutions a re  decaying exponentials for all values of a except 
a = 0. Since a = 0 occurs with probability zero, this system is almost surely asymp- 
totically stable. There are no unstable solutions so we actually have deterministic 
stability in the sense of definition 3 . 1  but not deterministic asymptotic stability, defi- 
nition 3.2.  

The equilibrium state solution of the system in example I is almost surely 
asymptotically sample stable. 

It is shown in appendix B that the equilibrium state solutions of examples 111 
and Tv a r e  almost surely asymptotically sample stable for 

(3.29) 

and 

B >  0, (3.30) 

respectively. We recall that for second moment stability of the system of example 111, 
the requirement was 8>(1/2)Sw. Hence we find that for -(1/2)% <e<(l/2)Sw the second 
moments will grow to infinity while from (3.29) &l samples approach zero. Similarly, 
for example Tv, 0 
from (3.30) all samples approach zero. Again, the moment properties do not reflect 
what the system is doing on a sample basis. 

@ < 2a2  implies that the second moments grow to infinity while 

Examples II-V illustrate the different stability properties of the moment solu- 
tions and the sample solutions. These results are compared in table 3 . 1  which follows 
example VI. In particular, they show that the sample solutions may be asymptotically 
stable while various moments have blown up o r  a re  diverging as t-m. What about the 
converse situation? Can we construct an example where the solutions blow up but the 
moments behave nicely? 

Example V I  

The problem is to find a differential equation whose solution is unbounded 
(i. e.,  no matter how large a number you choose, the value of the solution, at some 
time, will exceed this number) but the expected value of which remains bounded for all 
time. In this particular example, which is admittedly somewhat artificial from an 
engineering point of view, the solution is unbounded as t-w but its expected value con- 
verges to x the initial condition. 0’ 

The idea in constructing this example i s  to  create coefficient samples that 
look like sequences of rectangular pulses with amplitudes that grow but areas  that 
decrease to zero as t-. 
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Consider the first order (scalar) differential equation 

x = f (t)x, x(0) = x 0 
1 0 

which has the solution 

t 
Jof1(7 )d I- 

x(t) = x e 
0 

(3. 31) 

(3.32) 

Define a sequence of time points ci which a re  independent and uniformly distributed 
1 

random variables over the time intervals I. where I. 3 0-1) i- S c  Si--. 
2 

1 

(i + 1) (i + 1) . 2 1  1 1 

Note that I. is contained in the time interval [i - 1, i]. 
1 

Let the coefficient f (t) consist of a sequence of rectangular pulses with level 
1 2  zero o r  fa i ,  where ai = (i + 1) log (i + l), and length (i + 1)-2 which are positioned 

about the time points ci as shown in figure 3-2. See figure 3-3 for integration of fl(t) 
with respect to time. Using equation (3-32) we see that this particular sample solution 
has the form shown in figure 3-4. Notice that the amplitudes of the pulses grow with- 
out bound as i increases (t-m) and the area under each pulse is bounded by 

-0 as i - m .  
0 

i +  1 

X - 

To determine an upper bound for the expected value of the (x(t), tc [O, 
we note that in the time interval (i - 1, i) the P(x(t) > xol is simply the ratio of the 
length of the interval over which ci ranges such that x(t)>x to the length of the interval 
Ii (ci uniformly distributed). 

process 

0 

F o r i  - l s t < i  

(3.33) 

(3.34) 
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Figure 3-2. Typica Sample of the Coefficient f l ( t ) .  

0: 

Figure 3-3. Integral of the Sample in Figure 3-2. 

i 
I 
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I 

I I A I I I m t  
I I 

C1 1 c2 2 1 - 1  c, I 

Figure 3-4. Sample Solution of Equation (3 .31) .  20 



From (3 .33)  and (3 .34)  an upper bound for the expected value of the 
(x(t), t c [O, a)) process is 

EXAMPLE MOMENTS 

2(i + l)xo 
5 + X  

(i + 1) -2 
0’ 2 

SAMPLES 

for t e (i - 1, i) 

- 2  
I x + a x = O  

2 
I1 + (a + k )x = 0 

-‘x as id- 
0 

Asyrnp totically stable Asymptotically 
stable 

Asymptotic ally 
stable for 

2 
a + k  > O  

2 
2nd moment unstable for all k 

(3.35) 

E{x(t)I can certainly be no less than x so the equality in (3 .35)  holds, i.e., 0 

0 E{x(t)) = x 1 im 
t-‘= 

Thus the samples of the x(t) process a re  unbounded but E{x(t)f is bounded as t+@. 
In fact, not only is the first  moment bounded but it is also stable in the sense that 
given an E > 0 there exists a 6 > 0 such that Ix I = x < 6 implies E(x(t)\ <e (let 6 = 1 /3 e ) .  0 0  
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TABLE 3 . 1  (Continued) 

I 
Unbounded as 
t-,- 

COMPARISC 

EXAMPLE 

I11 K +  [B+W(t)]x = 0 

- 2  
V x - a x = O  

VI K = f (t)x 1 

? OF MOMENT STABILITY AND SAMPLE STAl 

MOMENTS 

2nd moment asymptoticall3 
stable 

qth moment unstable 

2nd moment asymptotically 
stable 

4th moment unstable 

2 2 
20 <p<40 

All moments a~ for t > 1/2 

E{x(t))is stable and -, x as t -, 0 

I LIT Y 

SAMPLES 

Asymptotically 
stable for 
B ’- (1/2)SW 

Asymptotically 
stable for B>O 

Increase 
exponentially 

Key : 

a 

k, B ,  
2 sw, r3 

Gaussian random variable 

Constants 

Gaussian white noise 

Zero mean stationary ergodic Gaussian stochastic process 

A sequence of steps described in figure 3-2 

In this section w e  have tried to give a capsule idea of what stochastic 
stability is about, what some of the known results are, what some of the 
problems are, and how some of the types of stochastic stability are  related. 

The subject is somewhat new and may not be known to many readers. W e  
suggest that the reader study the examples of this section and appendix A since a great 
many of the significant features of the subject lie in them. In the sections to follow, 
we  shall use the terminology of this section and discuss specific applications of the 
ideas presented here. 
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4. ANAL YS ES 

4 . 1  Conditions for Second Moment Stability 

4 .1 .1  Asymptotic Stability of the Second Moments 

The question of stability in the transverse direction of a simply supported rod 
of uniform cross section, which is subjected to a stochastically time varying uniform 
longitudinal force, will be approached in several ways. The approach here is to 
determine the conditions under which the second moment of the transverse deflection 
will asymptotically converge to zero. As discussed in the previous section, there is 
some question as to what this means the sample deflections a r e  doing; however, 
section 4.2.2 will show th@t if this convergence is exponential then the samples will 
also approach zero asymptotically. 

Assume the longitudinal force to be a constant plus a zero mean Gaussian 
white noise. Under this assumption, it is known that the solution of equation (2.12) 
will be a vector Markov process which enables us  to use the many mathematical 
tools associated with Markov processes. However, all is not rosy. The theory of 
Markov processes yields a fairly simple method to determine stability in an average 
sense but, for engineering purposes, this requires the Gaussian white noise assump- 
tion which complicates matters for two reasons. First, the mathematics involving 
the Gaussian white noise is complicated even to the extent of requiring a different 
calculus when manipulating differential equations with white noise coefficients and, 
second, it is not true, in general, that similar stability results will be obtained for 
analyses using white noise and broad spectral band physical noise coefficients. See 
appendix A for a further discussion of this question. 

Since we can obtain the vector Markov property for the solution process of 
(2.12) by using the Gaussian white noise, let u s  consider some of the properties of 
this type of noise. As usually described in the literature, white noise W(t) has a 
zero mean, a Gaussian distribution, and a power spectral density function with the 
constant value Sw over all frequencies. It is equivalently characterized as having 
a covariance of the form 

E { W (t) W (t+T)) = Sw6 (7) (4.1) 

where 6 (7) is the Dirac delta function. The Gaussian white noise, in the sense just 
defined, can be derived from the Brownian motion, or  Wiener process B (t). The 
Brownian motion process with parameter Sw is a Gaussian process whose incre- 
ments dB(t) = B(t+dt)-B(t) have the mean and variance 

E {  dB(t)[ = 0 (4.2) 
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It is known that the samples of B(t) a r e  continuous everywhere but have the 
unusual property of being nowhere differentiable. However, it can be shown that 
the Gaussian white noise is representable as  the formal derivative of the Brownian 
motion process, 

W(t) = dB&) dt = h( t )  (4.3) 

which does not exist since the samples a re  not dlfferentiable. To circumvent this 
apparent paradox, the differential equations will be written as  incremental equa- 
tions and properties such as  (4.2) used. The fundamental results here a re  due to 
It0 and can be found in reference 1161. 

Using the vector Markov property of the solution process of (2.12) and 
following reference [17] we will now derive a stability criterion which is sufficient 
to ensure asymptotic stability of the second moments of the rod deflection (definition 
3.4). If the second moment of the rod deflection is bounded by a decaying exponen- 
tial then it will converge asymptotically to zero. Since the rod deflection is 
represented by the infinite series 

Eo 
w(x, t) = z1 s i n 3  fn (t) (4.4) 

then the second moment is 

2 co mn 
E(w (x, t)\ = m, n=l C s i n 7  sin% c E(f m n  (t)f $)I 

by the Schwarz inequality. Therefore, if there exist positive constants a and b 
independent of n such that 

2 2  -bt E{w f (t)jSae for all n and t20 n n  
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then 

mn nn -bt 03 s h y  S ~ T  E{W (x, t ) tsae m, c n=l L -  L 2 

w w 
m n 

mn nn 
which converges to zero asymptotically since m, n=l 3 sin---x L -  sbT converges 

w u) m n 
2 2  
n n  

uniformly and absolutely. Thus, bounding E{w f (t) 1 by a decaying exponential for 
all n will give asymptotic stability of 

E{w2 (X,t)  1. 

The differential equation for f (t), {2.12), is n 

(4- 8) 
2 i. 

fn ( t )+2Bnin ( t )+ r sn . [ l+v  n I (t)]f n (t) = 0 

Letting IJ~ B(t) be the Gaussian white noise B(t) and putting (4.8) in state vector form 

by the change of variables 
n 

x1 (t) = f n (t) 

x2 (t) = k (t) 1 (4.9) 

gives 

- 
2 - x  1 

X 

2 
k 2 = -2Bnx2-on [ l+B (t)] x1 (4.10) 
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Let x be the state vector with components x and x Then for states x,S and 1 2' 
times s< t ,  the conditional probability density function p(x, t 1 5. , s) satisfies the 
Fokker Planck equation 

where ai (x, t )  and b.. (x, t)  a r e  the first and second derivate moments defined by 
9 

the following conditional expected values 

lim 1 lim 1 
ai (x't) = dt-0 dt 1 t40 dt -E( X. (t+dt)-xi (t) 1 x 0  = x 1 E -E ( dxi (t) 1 x (t) = x ) (4.12) 

lim 1 
dt40 dt 1 J 

- E (  [x. (t+dt)-xi (t)] [xj (t+dt)-x. (t) ] = x \ b.. (x,t) = 
1J 

lim 1 
dt40 dt - E{dxi (t) dxj (t) x (t) = x )  - - - 

Writing (4.10) a s  a system of incremental equations 

dxl (t) = x2 (t) dt 

(4.13) 

(4.14) 

2 2 
dX2 (t) = -[2Bnx2 (t) + o n  x1 (t) ] dt-0, x1 (t) dB (t) 
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and substituting this into (4.12) and (4.13) we obtain the first and second derivate 
moments. 

lim 1 
dt+ 0 dt 2 -x (t) dt - - 

= x2 (t) (4.15) 

2 2 lim 
dt-,O dt n l  E{ - [2Bnx2 @)+a x (t) 3 dt-anxl (t) dB (t) I x (t) = X I  a2 (X,t) = 

lim 1 2 2 
dt30 ( -  r2Bnx2 $)+OnXl (t) 1 dt-anxl (t) E{dB Ct)l) - - 

(See equation (4.2). ) (4.16) 2 
= -26 x (t) -0 x (t) 

n 2  n l  

lim 1 2 
b 11 (x,t) = dt+ 0 -E{  dt [x2 WdtI I x( t )  = X I  

lim 1 2 2 
dt-t 0 dt 2 --x (t) (dt) - - 

= o  (4.17) 
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(See equation (4.2). ) 

The Fokker Planck equation for the system (4.14) or  (4.10) is obtained by substitut- 
ing (4.15) through (4.19) into (4.11) 

$ - l a 2  4 2 a a 2 
- - --g o s  n+lPl - - [X2PI + - [ (z8nx2+anxl)Pl (4.20) 

a t  ax 2 a x1 ”2 
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We a re  interested in finding the second moments of the state vector components, 
i . e . ,  

(4.21) 

These can be determined directly by a formal procedure of multiplying the Fokker 
Planck equation (4.20) by 

i j  
1 2’ 

x x i+j=2, 

and integrating over all (x,~ x2). 

But 

29 



which is just the left side of (4.22). Now integrate by parts with respect to x the 
second term on the right of (4.22). 1 

W 

(4.23) j +1 
,m ,co -m 

We will assume that the second moments exist which implies that the first term on 
the right of (4.23) vanishes. Hence (4.23) becomes: 

- - -im i - l y j + l  ' 

Evaluating the remaining two terms, (4.22) becomes 

(4.24) 

This gives the following set of coupled linear first order constant coefficient 
differential equations for the second moments of the state vector components. 

4 2 m = CJ S m -20 m -48 m 
n W 2,O n 1,l n 0,2 OY2 
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or  in vector-matrix notation 

d 
dt 
- 

- 
2 0 r" 
-28, 1 

2 
n - - 

2 
n 9 

-20 - 4(3 

For (4.26) to be a stable system, its characteristic equation 

(4.26) 

(4.27) 

must have eigenvalues with negative real parts. The Routh Hurwitz criterion yields 
for stability 

n s <4- 
n 

8 

w 0 2  (4.28) 

To obtain (4.6) we have from (4.4) 

E { fn 2 (t)i = 4 1% E { w (x, t) w (XI, t))sin-x nn sinExl dxdx' (4.29) 
.e G G2 0 0 

2 
n Assuming E (w (x, t) w (x', t)i is bounded initially over 0 to G, since E{ f (t)I is 

stable for all n by (4.28), and since 

G n 1 
nn dx = - [l-(-l) 3 = 0 (;) 
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then from (4.29) we have for any t2 0 

(4.30) 

Since (4.28) assures that (4.27) will have eigenvalues with negative real parts for 
all n, then a b>O, independent of n, can be found which is a lower bound for the 
absolute values of these real parts. Thus by multiplying (4.30) by w i  we see that 
an a>O, independent of n, can be found such that (4.6) holds. 

Denoting the power spectral density function of @ (t) by S 

notation of (2. lo), (2.13), and (2.14), (4.28) becomes 

S@ < 48 EIm (1 - -* ) n 
P 

(4.31) 

Upon satisfaction of (4.31) for all n, the second moment of the rod deflec- 
tion will be asymptotically stable. In fact, by definition 4.1 of section 4.2.2, it 
is exponentially stable. The results of an analog computer simulation of (4.8) for 
a wide band noise longitudinal force is included in section 4.2.2 where some 
sample solutions are exhibited. 
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4.1.2 Second Moment Stability for Narrow Band Excitation 

In the previous section, the study of the stability of a simply supported rod 
subjected to a random longitudinal force led us to consider the equation 

.. 
f + 2 8  i + 2 [ 1 + p  @(t)If = o  n n n  n n n (4.32) 

In that section we considered a white noise excitation and in section 4 . 1 . 3  we will 
consider @ (t) to be a nonwhite physical noise. 

Another case of interest occurs when the cf, (t) random function is a narrow- 
band noise. That is, most of the average power, as a function of the frequency 
content, is  centered at a single frequency. One method of constructing a model of 
narrow band noise is to superimpose a small white noise on a cosine function. With 
this model, both Markov process theory and Floquet theory can be used, respectively, 
to derive moment equations with periodic coefficients and to study their stability. 

The damping coefficients B, for the vibration modes of the rod which 
exhibit the most response 
is to neglect damping. In 

are usualy quite small. A conservative assumption 
this case (4.32) becomes 

(4.33) *' 2 
fn +on[ l  + p @(t)]f  = 0 n n 

Now if (P (t) = cosw t, then (4.33) is the Mathieu equation which admits bounded 
(i. e., stable) solutions in certain regions of the (on, pn) plane. It is of interest to 
see if a similar result can be obtained when a small white noise is superimposed 
on the cosine function, That is, when 

2 

m (t) = coswt + W(t) (4.34) 

where W(t) is the Gaussian white noise with mean zero and 

E{W(t) W ( t + T ) \  = SW6(7) (4.35) 

Now, a re  there (on, pn, Sw) regions for which the second moments of the solution 
process of (4.33) (or, better yet, the samples themselves) a r e  bounded? 
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Remembering that the Gaussian white noise can be represented as the 
formal derivative of the Brownian motion process, W(t) = B(t) , we can rewrite 
the equation (4.33) using (4.34), as the system of differentials 

dx = x d t  
1 2 

2 dx = -02 (1+p coswt) x dt - p a x dB (4.36) 
2 n n 1 n n l  

where 

x = f  1 n 

x = x  
2 1 (4.37) 

Referring to (4.14 - 4.20) of section 4.1.1, we can wr i te  the Fokker-Planck 
equation for the density function of the system (4.36) a s  

2 2 
= -x + O ( l + p  coscut) x = + L(p ,2)2S x2 q. 

2 ax, n n l% 2 n n  W l a x 2  (4.38) 

where 

2 E{(dB) 1 = Swdt. 

Paralleling (4.21 - 4.26) of the same section, w e  arrive at the following set 
of differential equations for the second moments of the solution of (4.36). 

(4.39) 
2 m = -O (1+p  coswt)m + m 

m = (pnun) s p 2  - 20 ( ~ + p  coswt) m 

1,1 n n 290 092 

2 2  2 
OY2 n n Y 1 9 1  



The system of equations (4.39) is a multidimensional Mathieu system which 
can be put in vector-matrix form. 

r o  - 
2 0 

0 1 

2 -20 ( I + p  coswt) 0 2 2  c w n q  sw n n 

Since (4.40) is a system of differential equations with periodic coefficients, its 
stability properties can be investigated using Floquet theory. Instead of pursuing this 
we will obtain a qualitative result by considering the differential equation for 

Differentiating the first equation of (4.39) twice with respect to time and using 
the second and third equations gives 

d3 d2 
3- fm2, 01 = dt2 fml ,  11 

2 d  d 
n dt = -20 -[(1+p n coswt)m 290 IC 2 [mo, 2] 

2 2 d  2 2  
n 1 9 1  n dt 2,o 

= -40 (l+pncosot)m - 20 -[(l+pncoswt)m ]+2(pnun) Sf12 ,0  

or 

(4.41) 
To make a comparison of (4.41) with the deterministic equation, consider 

(4.33) and (4.34) without the white noise, i. e. , sw= 0 ,  

2 .. 
f + 0 (1 f p  c0swt)f = 0 n n n n (4.42) 
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We are interested in expressing (4.42) as  3 differential equation in terms of the 
dependent variable f:. First multiply (4.42) by 2 f n 

2 . *. 
2f f + 0 (1+p coswt) 2f i = 0 

n n  n n n n  

o r  

- [ f  d -2 ] = -B 2 ( l + p  cosmt)--[Hl d 
dt n n n dt n 

Now 

d 2  
d t  n n n  - [ f  3 = 2f i. 

2 .. 
Z P [ n  n n n  

31 = 2? + 2f f 

Substituting i.' from (4.42) into (4.44) gives n 

Differentiating (4.45) gives 

d3 d 2 d  2 - [HI = 2 [<I - 2OnX [(l + p cosmt)fnl 
dt3 n n 

Substituting (4.43) into (4.46) gives 
n 

n n dt n n 

(4743) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

Compare equations (4.41) and (4.47). For S = 0, they a re  the same when W 
2 
n 2 , o '  

f is identified with m 

2 
Since f satisfies the Mathieu equation (4 .42) ,  f of (4.47) will possess the same 

n n 
stability regions which, in turn, will  coincide with the stability regions of (4.41) for 
sw = 0. 
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Now w e  will use a theorem similar to Theorem 4.1 of reference [18] on the 
continuous dependence of the solution of the differential equation (4.41) upon the 
parameter S 

argument S 

solutions of (4.47), which coincide with those of (4.41) for S 

limits on [t , T] of the solutions of (4.41) as  S + 0. 

Since the right hand side of (4.41) is a continuous function of the 

and is bounded in finite regions of the state space, it  follows that the 

= 0, wi l l  be uniform 

W’ 

w’ 
W 

0 W 

2,O’ Hence, for Sw small, the stability boundaries of the second moment m 

satisfying (4.41), will coincide approximately with the stability boundaries of the 
Mathieu equation (4.42). Naturally, equation (4.40) can yield explicit results. But, 
on a qualitative basis, we can say that the narrow band noise obtained by summing 
a sinusoidal term and a small background wide band noise will not change the stability 
properties of the second moment of the rod deflection. 

What can we say about the sample properties for this case? In a stable 
2 

(on, kn, S ) region, the second moments are  almost periodic as  determined from 

Floquet theory. Thus the second moments are  bounded. How is this reflected in 
the sample properties? Al l  that can be stated at this time is that the bounded 

1 f G  second moments guarantee that the sample solutions will grow no faster than t 
where E is any small positive constant. This is not too useful in studying the stability. 
W e  would like to say that almost all samples will be bounded or, even better, decay 
to zero. If there is damping in the system, say a s  given by (4.32), then it will  follow 
from Floquet theory that the stable solutions to the second moment equation, which 
will now have a damping term present, will decay exponentially, In this case, as  will  
be discussed in section 4.2.2, we can not only say that the sample solutions will be 
bounded, but in fact, they will also decay exponentially with probability one. 

W 
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4 . 1 . 3  Power Spectral Density Criterion for Stability of the Second Moments 

In the previous two sections, as will be done also in this section, stability 
is defined in terms of the moments of the solution of a second order differential 
equation. Ideally, all the finite dimensional probability distributions of the solution 
should be determined but in most cases this is impossible. The first order prob- 
ability distribution gives a partial statistical description of the solution but in most 
cases of practical interest even this cannot be obtained. Some of the information 
contained in the first order probability distribution is given by the first and second 
moments and in the Gaussian case these moments completely describe this distribu- 
tion. Due to the relative ease of determining moments, we will be satisfied with 
this partial description of the solution process. 

When a linear differential equation has a random input without random 
coefficients, the solution can be expressed as the convolution of the impulse response 
and the input. Since the convolution integral is a linear operation on the input, the 
moments of the solution can be determined directly from the moments of the input: 
by taking the expected value of powers of the convolution integral. For linear differ- 
ential equations with white noise coefficients the Fokker Planck equation yields 
solution moments immediately but in the non-white noise case, to be considered 
here, there is no general method for obtaining solution moments. 

For the first order differential equation with a continuous spectrum Gaussian 
process as the coefficient, the moments can be obtained exactly. The reason for 
this is the following. The solution of the first order differential equation, 
x(0) = 1, can be written as the exponential of a definite integral of the coefficient, 
i. e. , x(t) = exptoft f ( T )  dT]. But since the coefficient f(t) is Gaussian so is its 
definite integral and the expected value of the exponential of a Gaussian process can 
be determined exactly by using i ts  characteristic function. This yields the moments 
of the solution. 

= f(t)x, 

For the second order differential equation with a Gaussian Coefficient, the 
solution as a two component vector cannot be expressed as an exponential of a 
definite integral alone. See equations (4.60) and (4.61). Since the solution is a 
nonlinear function of the coefficient and i s  not the special case of an exponent of a 
Gaussian process, the moments cannot be determined exactly. However, with 
appropriate assumptions, this will be done approximately. This result is due to 
Graefe [ll]. 

We a re  interested in the stability of the equation 

2 
n n n  n 
.. 
f + 28 i + c3 [ l+c@(t ) ] fn  = 0 (4.48) 
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where E is a small positive parameter and m(t) is not white noise but is now a 
mean zero, stationary, Gaussian noise with a continuous power spectral density 
function. Approximate stability conditions are derived which yield the intuitively 
appealing result that the stability of (4.48) depends only on the value of the power 
spectral density of 6 (t) at twice the damped natural frequency. It is also interest- 
ing to find that for small damping the value of the power spectral density determin- 
ing stability is the same as that found in section 4.1.1 when ip (t) was white noise. 

Substituting 

-5 B e 
f n (t) = e n n qn(t) 

into (4.48) gives 

2 
'n n .- + I, [ l  + ecnm (t)] qn = 0 

where 

v n = a  n JT' 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

Assuming the solution of (4.51) to have slowly varying amplitude and phase, 
i.e., be in the form 

gCt) = rn(t) cos (v t + 0 (t))i r cos cp n n n n 

where 

(4.54) 

(4.55) 
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and imposing the condition - 

= -v r sincp 
'n n n  n 

yields the equation 

i. cosv - r 8 sincp = 0 n n n n  n 

Substituting (4.54) and (4.56) into (4.51) gives 

= v ii e * ( t ) r  cosw E sinv +i r coscpn n n  n n n n n n  

Solving (4.57) and (4.58) simultaneously 

n l  

n 

E 
r 2 n n  
- -  - -v II e g(t) s i n s n  

; = -v 1 ji sQ(t) [l + cos2wn] n 2 n n  

The solution of (4.59) is 

where 

An(t) = &v 5 E)@(T) sin2cp (7) d7 
0 n 2 n n  

t 
= I v  j7, e f i  (7) [I + cosz(p,(~)] d7 

0 
Bn(t) 2 n n 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

Note that the form of the solution (4.60) and (4.61) is similar to the exponential form 
of the solution to the first order differential equation with the exception that the 
exponent is not simply the definite integral of the random coefficient @(t). 

To obtain an approximate stability condition we expand An and Bn in a power 
series of the small parameter e 

A (t) = CAn ("(t) + e2 A (2)(t) + 2 Ant3)(t) + . 
n n (4.62) 

B (t) = E B  ("(t) + 2 Bn(2)(t) + e Bn (3)(t) f . . * 
n n 
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and letting 

u) = $1 t + 0  (4.63) 
nO n nO 

we expand cos 2v and sin2a in a Taylor series about 2a n n nO 

cosWn = cos (2vno + 2 B ) n 

n nO = cos 2xpno - 2 e B ('I sin2u) + O(E2) (4.64) 

sin2tPn = sin('& + 2 B  ) nO n 

nQ n = sin2m + 2 e B cos ano + O(e2) (4.66) 

where the notation O(e2) represents terms with powers of e 5: 2. Substituting (4.621, 
(4.64), and (4.65) into (4.61) and equating coefficients of E and e2 gives 

A ("(t) = -v /" W) sin 2tpnOF) dT 

]@(T) c o s w  nO (T) B,(l)(T) dT 

n 2 n n o  

"n'n 0 
A ("(t) = n 

t 
B ("(t) = 'v 14 ST?(.) [1 + cos2vno(T)] dT 

n 2 n n o  

B n (2)(t) = -vnbn/ Q(T) sin2vnO(T) Bn(l)(T) dT 

To obtain a condition for asymptotic stability of the second moment of the rod 
deflection we follow exactly the same argument as 
through (4.7). From (4.50), (4.54), and (4.60) 

(4. 66) 

in section 4.1.1 equations (4.4) 

1 2 An@) cos 2 B,(t) 1 2  -2Cngnt[ E (e2An(t') - - -r (0)e + cos z'pno(t) E 1" 2 n  

11 2 An&) 
- s inan0( t )E  sin2B (t) n (4.67) 

41 



Since P (t) is Gaussian and linear operations on Gaussian processes yield Gaussian 
processes, An(')(t) and Bn(l)(t) are Gaussian but An(')(t) and Bn(2)(t) are not. Thus 
An(t) and Bn(t) are only approximately Gaussian. To determine the expected values 
in (4.67),  the joint density function of An(t) and Bn(t) is required. We will assume 
that An(t) and Bn(t) are jointly Gaussian which leads to the approximate stability con- 
dition (4.69) below. If the joint density function of An('), An(2), Bn"), and Bn(2) 
cwld be determined, then (4.68) and therefore the stability condition (4.69) would 
include the various momenta of An(1), An(2), Bn"), Bn(2) and not simply those of An 
and Bn. 

Assuming An and Bn to be jointly Gaussian, the expected values in (4.67) can 
be determined from the characteristic function or  by direct integration. 

2(m +Y 2 - Y  2)  
An An Bn 

cos2B (t) = cos 2(m +2yA ) e 
Bn n n  

2(mA +YA 2 -Y 2)  
n n Bn 

1 2An (t) 

2An(t) 

n 

sin2Bn(t) 1 = sin2(m Bn + 2 Y ~ n ~ n )  e 

where 

n 

(4.68) 

Substituting (4.68) into (4.67) 

- sin2q sin2(m e 
B +2VA B n n  nO n 
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from which the condition for asymptotic stability i s  

Since E'@(t) '  - 0,  then EIA ("(t) = 0 and 
1 I -  I n  I 

= B E I A  2 (2 ) 
n n A m + O  (2) 

2 Retaining terms of the order of smallness up to B , (4.69) becomes 

From (4.66) 

(4.69) 

(4.70) 

+ cos2v (7 -7 ) I  dr d7 (4. 71) n 1 2 1  1 2  

(4.72) 

where 

is  the covariance function of the zero mean process (9 (t), te[O,a)}. The covariance 
and the power spectral density functions a re  Fourier transform pairs, i. e.,  

COSW'T s @) C?.U (4.73) m r@(q = p eiWT Sm(w) cku = - 
a 2n 
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Substituting (4.73) into (4.71) and (4.72), and assuming S9 (w) converges to zero fast 
enough as u,+m s o  that the order of integration can be interchanged, yields the fallowing 
five integrals to be evaluated. 

= 111 S,(w) cOSw(T -7 ) COS[~V (T -t7 )+48 ] dT dT dw (4.74) I3 m 1 2  n 1 2  nO 1 2  
-m 0 0 

m t t  

212 
I4 - - 2 /664.1 c o s w ( ~  -T ) cos 2v (7 -7 ) d~ dT dw = 

1 2  n 1 2  1 2  
-00 

Using the following relation from [lo]. 

and the fact that S+(w) is a continuous even function of w, [ll] 
integrals (4.74) and obtains 

evaluates the five 

= 4 1 S9(m)[6(w+2vn) +6(w-2v n ) 1 dw 
-OD 

(4.75) 

1 
2 ,  = - s  (2vn) (4.76) 
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and from (4.74) 

lim 1 lim 2 
t-m t 4 t-0 t 2 n - 1  = - I  =sm (2v ) 

Substituting (4.75), (4.76), and (4.77) into (4.70) gives the stability condition 

(4.77) 

(4.78) 

which when satisfied for all integers n implies that the second moment of the rod 
deflection will asymptotically converge to zero as t-0. Notice that the power 
spectral density is evaluated at only one frequency, i. e., twice the damped 
natural frequency of (4.48). 

Using the original terminology, i, e., 

n n 

(4.78) becomes 

2 2 which for low damping values 8 < < CT n n becomes approximately 

0 
P 

P 
= 48 EIm(1- 7 ) for all n n 

n 

(4.79) 

(4.80) 

In the stability condition for low damping (4.80), the power spectral density level 
on the stability boundary is the same as that in (4.31) of section 4.1.1 for white 
noise; however, since (4.80) is an approximate stability condition and the physical 
interpretation of the white noise result is open to question, this can only be con- 
sidered a s  an interesting coincidence at this time. 
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4.2 Conditions for Sample Stability 

4.2.1 Sufficient Conditions for Asymptotic Sample Stability 

The methods presented in the previous sections were  primarily concerned 
with stability of the rod deflection in an average sense, i. e., stability of the second 
moments. It seems obvious that the most desirable result would be the stability of 
the sample solutions for the rod deflection. The approach presented here is due to 
Infante [14] and yields a sufficient condition for asymptotic sample stability when the 
longitudinal force is a stationary ergodic stochastic process. It is important to note 
that this result is not valid for the Gaussian white noise since the calculus required 
is not used. 

A s  before, we consider the following infinite series for the rod deflection 

nn W 

w(x, t) = n Z =1 sin - G x fn(t) (4. 81) 

Since the equations involved are linear, asymptotic sample stability requires that 

lim 
t- w(x, t) = 0 (4.82) 

with probability one. 

Assuming that the f,(t) are asymptotically stable (the conditions for this will 
be determined in this section) then they will  be sample bounded over t. Using the 
Weierstrass M-test, we obtain the uniform convergence of (4.81) with respect to t 
and can then interchange the limit and summation. 

Thus 
W 

lim lim nn 
t4 t+= n=l 4, w(x, t) = sin -x fn(t) 

50 
nn lim 

= I; sin-x f (t) 
n= 1 4, f- n 

= o  

will be satisfied if 

(4.83) 

lim 
t-, 0 

fn(t) = 0 for all n (4.84) 
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The differential equation for  f (t), (2.12), is n 

2 .. 
f n ( t ) +  2@ i ( t ) + d n [ l + P n r ( t ) l f n ( t ) = O  n n  (4.85) 

Letting 
(4.85) in state vector notation, and suppressing the subscript n on the compments of 
the state vector, i.e., x = f , x = x gives 

(t) =f(t) be a mean zero stationary ergodic stochastic process, writing 

1 n 2 1 ’  

x = x  1 2  

x =-28 x -d 2 [ 1 + f(t) ]XI (4.86) n 2  n 2 

or  

where 

x = [ A +  F(t)]x (4.87) 

The sufficient condition for sample stability of (4.85) is obtained by defining 
a Liapunov function which is a positive definite quadratic form in the components of x 
and then determining conditions which ensure that this function, and therefore x, 
approaches zero as t-. 

To determine these conditions, the following result from linear algebra is 
required [20] Let D and B be m n  real symmetric matrices with B positive definite. 
The form x ’Dx-x ‘Bx is referred to in linear algebra texts (see 1201 for instance) as 
a pencil. Its characteristic equation i s  defined to be 1 D-AB1 = 0 and the A which 
satisfy this are the eigenvalues of the pencil. Denote the eigenvalues of an m n  matrix 
Q as A1[Q], . . . ,&[&I and the maximum and minimum eigenvalues as X [Q], and 
hmin[Q], respectively. The characteristic equation of the pencil x ’Dxm-y’B~ has n 
real eigenvalues As. The matrix DB”l has the same eigenvalues as the pencil and 

-1 m i n x  ’DX A [DB ] =  - 
min x ‘Bx 

-1 max x ‘Dx - IDB I =  ’Bx max 
x 

(4.89) 
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Now for the Liapunov function consider the positive definite quadratic form 

V(x) = x' Bx (4.90) 

Evaluating the time derivative of (4.90) along the trajectories of (4.87) gives 

?(x) = t ' BX + x ' Bk = x ' [ (A + F) ' B + B (A + F)] x (4.91) 

Define the function 

(4.92) 

Identifying (A + F)' B + B (A + F) in (4.92) with D in (4.89) yields 

h [(A + F)' + B(A + F)B'l J 5 h( t )  Amax [(A + F)' + B(A + F)B-'] (4.93) 
min 

Integrating the first order differential equation (4.92) gives 

1 t  [-J t-t t (7)d7](t-t0) 
V[x(t)] = V[x(t = V[x(tO)]e 0 0 

0 

Invoking the ergodic hypothesis, i. e., 

1 t  lim -$ X ( T )  d7 = E Ih. (t)) t-)= t'tO to 

(4.94) 

(4.95) 

From this it follows that if E( h ( t ) )  - e for some e 2 0 then V[ x(t)J is bounded and 
converges to zero as t+=, Since V(x) = x' Bx and B is positive definite, then 
V(x) > 0 for all x * 0 and V(x) = 0 for x = 0. This implies that x will approach zero 
as V(x) does. 

From the inequality (4.93) we can ensure that E ( h  (t)) - e if  we specify 
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This then is a sufficient condition for asymptotic sample stability of the system of 
differential equations (4,87), It is necessary that A have eigenvalues with negative 
real parts, which corresponds to B > 0, for (4.96) to hold. n 

To obtain the best sufficient condition for the system (4.87) and the particular 
Liapunov function chosen we specify the positive definite and symmetric €3 matrix in 
terms of two parameters cy1 and cy2. These parameters will then be determined by 
maximizing E {f2(t)i . 

(4.97) 

Its inverse i s  

(4.98) 

The matrix occurring in (4.96) and its maximum eigenvalue are 

A’ + F’ + B[A + FIBw1 = 

1 - 

(4.99) 

1/2 2 1  2 2 k = -28, + { 4(8,d1) + - [ -0 -  (1 + f) + a + CY + 2a1(8n-CY,)] 1 (4.100) 
max CY2 n 2 1  

Substituting (4,100) into (4,96) gives 
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Using the Schwarz inequality we get a sufficient condition implying the inequality 
(4.101) 

which, after squaring both sides and using E{f(t)/ = 0, becomes 

2 2 
n 2 1  + 2cu1gn - c y p 2  - e '  (4.102) 

To determine cy and cy we define 
1 2 

2 
+a2 + 2 a  43 -cy,)] 

2 
1 1 n  G(al ,  cy2)=4a) CY (2$ -a1)-  [ - O , + C Y ~  1 2  n 

and find the maximum of the right side of (4.102) by 

2 4(B -CY1) [cy, + o -cy (28 -CY ) I  = 0 2G -= 
n n 1  n 1  

2 
= 2 [-CY2 + on + C Y  (28 -CY ) ] = 0 aG - 

1 n 1  
aCY2 

2 which yields the optimal values of CY and CY 1 

tY = $  1 n  
- p 2 + 0  2 

C Y -  2 n n  
(4.103) 

Substituting the values (4.103) into (4.102) gives the desired sufficient condition for 
the asymptotic sample stability of the rod deflection 

(4.104) 
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* 
Using the relations ~1 @(t) = f(t), p = 1/(p -P ), and n n o n  
CJ = w 7 1-P /P , (4.104) becomes 
n n  o n  

0 
- 2 P - 

48n EIm(1 - -) for all n. 
P* n 

(4. 105) 

The criterion (4.105) for the asymptotic sample stability of the rod deflection 
is a condition on the variance of cP(t), the zero mean portion of the longitudinal force, 
whereas the stability criteria in sections 4.1.1, 2, and 3 are in terms of the power 
spectral density of Q (t). 

Equation (4.105) is displayed in figure 4-1 where the stable region is shaded. 

Figure 4-1. Sufficient Sample Stability Boundary for Equation (4.85) 
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4 . 2 . 2  Conditions for Exponential Stability of the Second Moments to Imply 

In this section we present and discuss a theorem which relates moment 
stability to sample stability of the solution process, ( x  (t; x t ) y  t a  [to, w ) 1 , of 
the following linear system 

0' 0 

(4.106) 
0 x = F(t)x, x(t,) = x 

where x is an n-vector and F(t) is a matrix with components that are constants and/or 
stochastic processes. 

The theorem concerns processes that a re  not white noise. A parallel 
theorem with essentially the same results for the white noiae case is presented in 
1211 and proved in [lo]. 

Definition 4.1. Exponential Stability of the Second Moments for Linear Stochastic 
Systems 

The equilibrium state solution x E 0 of the linear stochastic system (4.106) 
possesses exponential stability of the second moments i f  for any xo and t 1 to there 
exists (Y, B 

I-- - 
0 such thit 

(4.107) 2 2 
E { \I x (t;xo to) I\ 1 5 CY I\ x0 I\ ~ X P  [- R WO)l 

where 

In a considerable amount of the engineering literature devoted to stochastic 
stability, the concept of mean square stability has been used 13-51. A system is mean 
square stable if for any xo there exists some K > 0 such that &!% E ( \\x(t;x ,t 

Obviously, a system with exponentially stable second moments will be mean square 
stable. 

K. 
0 0  

Theorem 4.1. Let the solution process {x(t;xo, to), t c  [to, a)} of the linear system 
(4.106) possess second moments that satisfy defirution 4.1, That is, there exists 
CY, 8 > 0 such that (4.107) holds for any x and t 2 t 
F(t) are  stationary and have finite secon$moments, then the equilibrium state solu- 
tion is asymptotically sample stable in  the sense of definition 3.6. 

If the stochastic procesees in 
0' 

The proof of this  theorem is given in 1211 and will not be included here. 
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Note what this theorem says. Even though stability implications between 
moment properties and sample properties a re  generally invalid, the exponential 
stability of the second moments is a sufficient condition for the asymptotic stability 
of the samples. Since the method of obtaining asymptotic moment stability in 
sections 4.1.1, 4.1.2, and 4.1.3 was to bound the second moment of the solution 
process by a decaying exponential, then by Theorem 4.1, all the stability criteria 
obtained in those sections imply asymptotic sample stability. 

Since Theorem 4.1 gives only a sufficient condition for asymptotic sample 
stability, the resulting stability criteria may be conservative. An illustration of 
the conservativeness of this condition for a first order differential equation is given 
is appendix A. 

The analysis of section 4.1.1 and the result of Theorem 4.1 were verified 
experimentally on an EA1 221 analog computer. The differential equation 

.. 3 - 
fn(t) + 2Bnfn(t) +u n [l + W(t)] fn(t) = 0 

with the physical parameters 

(4.108) 

-1 
CY = 1.0 sec 

n 
(4.199) 

fn(0) = 1.0 N.D. 

-1 f (0) = 0.0 see 
n 

was  simulated; the analog computer circuit diagram is shown in figure 4-9. The 
noise coefficient (t) was  obtained from an Elgenco Model 311A Gaussian noise 
generator which has a power spectral density which is essentially constant from 
0 to 40 c. p. s. and decreases rapidly for larger frequencies. With respect to the 
natural frequency 1 rad/sec of the differential equation (4.108), this represents 
a wide band noise approximation to a white noise coefficient. 

The sufficient condition for asymptotic sample stability of (4.108) when the 
noise coefficient is white noise W(t) is 

n 4 @  

2 
en 

< -  (4.110) 
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where Sw is the white noise power spectral density level. W e  will assume that the 
power spectral density %(w) of E(t) has the form 

% 
S-(w) = W 

0 

that is ,  %(m) is constant for 0 I; \ w  I S  2 ~ ~ x 4 0  and zero elsewhere. The variance 

o-of E(t) can be computed from S-(w) by 2 
W W 

(4.111) 

= 80 % (4.112) 

% If we assume that we can use the wide band noise power spectral density level 

in (4.112) for the white noise power spectral density level Sw in (4.110), then an 

approximate stability criterion in terms of Q 

of (4.108) is 

2 
W for the asymptotic sample stability 

2 (80) (4 an’ 
w B  

2 
n 

0- < 

(80) (, 08) 
1.0 

- - 

= 6 . 4  N.D. 

2 

= a. 
W C r n  This stability criterion is meaningful since for a wide band noise process 6 

whereas (4.113) would be useless for the white noise W(t) for which Q 
2 
W 

A2 The sample variance Q was determined for each sample of the process W 
{E@), t c  [O,T]}from 

- 2  1 
Q- = - /: m2 (t) dt W T 

(4.113) 

(4.114) 
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where T = 20 sec. was  used for the simulation. We have used an ergodic hypothesis here to 

assure that the sample variance 0 
- 2  converges in some sense to the variance Q W W as T + a3 . 

Approximately 50 sample solutions of (4.108) were obtained for sample variances 
A 2  
CJ in the neighborhood of the values 0, 3, 6, 12, 20, and 30. Seven typical sample w 
solutions for sample variances around those listed above are shown in figures 4-2 
through 4-8. Notice the recorder amplitude scale change between figures 4-2 to 4-4 
and figures 4-5 to 4-8. Figure 4-2 is included for comparison and shows the sample 

solution of (4.108) for = 0 (no noise) and is simply the response of a lightly W 
damped oscillatory second order system with the initial conditions fn(0) = 1.0, 

f (0) = 0. The remaining six figures are sample solutions which correspond n 
A2 respectively to the sample variances o w  

29.98. 
= 2. 61, 5.72, 11.44, 12.01, 21. 27 and 

Due to saturation (overload) of the analog computer amplifiers, it is impossible 
to determine a precise stability boundary by analog simulation although the following 

statements can be made. For all sample variances 0 W 
were stable (see, for example, figures 4-3 and 4-4). For all sample variances 

A2 < 6.0 ,  the sample solutions 

> 20.0 the sample solutions were definitely unstable (see figures 4-7 and 4-8). w 
6 2  

Two sample solutions for sample variances in the neighborhood of 0 

shown in figures 4-5 and 4-6, These two solutions have roughly the same behavior up 
to the time that saturation occurred in figure 4-6, i. e. , a slow growth in the amplitude 
of the Qscillation. 
saturation limit of the amplifiers and its amplitude increased and decreased randomly. 

A2 This behavior was characteristic of all sample solutions with 0- in the neighbor- 
W 

hood of 12. Since the samples can be recorded for only a finite time, it is impossible 
to say whether either sample solution in figure 4-5 o r  4-6 is stable or  unstable. Intui- 

= 12.0 are W 

However, the sample solution in figure 4-5 did not exceed the 

A 2  
tively, this indicates that the stability boundary is around CJ = 12. 

Based on the approximate stability criterion (4.113) and the conclusion above, 
the stability criterion (4.110) is conservative. 

That (4.110) is a sufficient condition for asymptotic sample stability is evident 
from figures 4-3 and 4-4. Thus, the analog computer simulation has verified the con- 
clusion of Theorem 4.1. The interesting, and elusive, result is the necessary and 
sufficient condition for asymptotic sample stability of (4.108) when the noise coefficient 
is the Gaussian white noise. A t  the present time, this has not been determined. 
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Figure 4-9. Analog Computer Circuit Diagram 
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It might also be concluded from figures 4-6, 4-7, and 4-8 that the time to 

saturation (a first passage time) decreases with increasing6 

for all sample solutions recorded but did seem to occur on the average. 

This was not true W' 
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5. CONCLUDING REMARKS AND RECOMMENDATIONS 

Sufficient conditions for asymptotic sample stability of the transverse 
deflection of a simply supported rod have been obtained for the three types of 
random longitudinal force considered in sections 4.1.1, 4.1.2, and 
analog computer simulation verified the stability criterion for the c 
Gaussian white noise longitudinal force. These results a re  given i 
4.2.2. 

An 

Since necessary and sufficient stability conditions yield the stability 
boundary between unstable solutions and stable solutions, a further analysis is 
needed to determine how conservative a re  the stability criteria of section 4. 
Also, the physical interpretation of the stability criteria obtained when using 
the Gaussian white noise a s  a parameter in a second order system should be 
clarified. The results of section 4.1.2 can be extended by determining the 
actual second moment stability boundaries using Floquet theory. 

It would be desirable to extend the method of averaging, discussed in 
appendix B, to yield a stability criterion which is valid for an infinite interval 
of time since it could then be applied to nonlinear structural vibration problems. 
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APPENDIX A 

SAMPLE AND SECOND MOMENT STABILITY O F  A FIRST ORDER SY$TEM 

The solution process of a first order differential equation with a noise coeffi- 
cient can be determined explicitly for both the white noise (the formal derivative of the 
Brownian motion process) and the wide band physical noise cases. From these solu- 
tions, necessary and sufficient conditions for asymptotic sample stability can be deter- 
mined and a comparison made. Also, the sufficient condition derived from exponential 
stability of the second moment can be compared to the previous necessary and sufficient 
conditions. 

A s  was mentioned in section 4 . 1 . 1 ,  entirely different stability results may be 
obtained for white noise or  wide band physical noise coefficients. This will be illus- 
trated in the first order example below. 

First  consider the nonwhite system 

where a is a constant and f ( t )  is a wide band mean zero process which satisfies an 
ergodic property such that 

If f(t) is a stationary Gaussian process with an absolutely continuous spectrum, for 
example, then (A-2) will hold. 

The solution to (A-1) is 

t -at-$ f(7)d-r x(t) = x(0)e 0 
c 

-[a + LJLf(T)dT] t 
= x(0)e t 0  

Using (A-2) the exponent of (A-3) becomes in the limit 

lim 
[ a  + t-)= t o  Stf(T)dT] = a 

(A-3) 

(-4-4) 

A- 2 



Thus, the limiting solution to (A-1) is 

0 a > O  

(A- 5) 

a <  0 

lim 
t-- t 4 =  

lim x(o)e-[a + t f tf(T)dT]t 
0 

x(t) = 

Therefore, a necessary and sufficient condition for asymptotic stability of the sample 
solutions of (A-1) is 

Wong and Zakai [22], however, have shown that in the first order case, a 
general relationship may be established between the white and non-white cases. 
Roughly speaking, they proved that if  f@)(t) is a sequence of functions with some given 
properties which converge to the Gaussian white noise h(t) as id- then the sequence 
of solutions to 

converges in the mean to 

x + [a-- sw + B(t)]x = 0 2 

and not to 

k + [a + i i ( t ) ~ x  = o 

(A-8) 

(A- 9 ) 

2 where % is the parameter associated with the variance of B(t), i. e .  , E {B (t)l = SWt, 
and a is a constant. Now consider the Wong-Zakai equation which corresponds to (A-1) 

sw - x +  [a- -+B( t ) ]x=O 2 

It can be shown by using the calculus defined for white 
to (A-10) is 

-B(t)- at x(t) = x(0)e 

(A- 10) 

noise systems that the solution 

(A- 11) 

It is known ([23], p. 560) that samples of the Brownian motion process grow 

like 2t log t which as t-fm is dominated by t. Hence, the asymptotic stability of 4 2  
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(A-10) is determined by the deterministic portion of the exponent of (A-11) and (A-10) 
will  be asymptotically stable i f  

a > O  (A- 12) 

This is the same stability condition as (A-6). 

Now, if  one were to proceed from (A-1) in a seemingly natural fashion by 
replacing the wide band physical noise f(t) by white noise B (t), i. e., 

& + [a + & ( t ) ~ x  = o (A- 13) 

then by analogy with (A-10) and (A-11) the solution is 
c! 
-W -B(t) - (a +-)t x(t) = x(0)e 2 

which will be asymptotically stable if 

a +- 2 

(A- 14) 

(A- 15) 

In the (a, %) plane, the stability of (A-1) and (A-10) can be compared to 
(A-13). 

0 

4 

/ / /  
0 0 / (A - 1) AND ( A -  10) STABLE 

0 0 0  

\\\ (A - 13) STABLE 

Figure A-1. Sample Stability Boundaries for Equations (A- l ) ,  (A-lo), and (A-13) 

In the first order system, then, the procedure of replacing a wide band noise 
f(t) by white noise h ( t )  actually increases the stability of the system which certainly 
counters physical intuition since the variance of f(t)-= as its bandwidth-,=. 
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By obtaining a sufficient condition for asymptotic stability from second moment 
exponential stability and knowing the necessary and sufficient stability conditions, we 
can get an indication of how conservative the second moment approach is. 

Following the procedure of section 4 . 1 . 1 ,  we write (A-13) as an equation i n  
increments 

d~ = -Wdt - xdB(t) (A-16) 

for which the derivate moments are 

a(x, t) = -ax 
(A- 17) 

2 b(x, t) = S x W 

The Fokker Planck equation is 

2 2  

a x  
Q=aw+%,.,, a t  a x  2 

and the equation for the nth moment becomes 

which for n = 2 is 

m = [-2a + S ] m  2 w 2' 

m2(t) is exponentially stable if 

> 0. a -- sW 
2 

(A- 18) 

(A- 19) 

(A-20) 

(A-21) 

In a similar manner the Wong-Zakai equation (A-10) will have a stable second moment 
if 

a - S W > O  (A-22) 
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In the (a, Sw) plane, (A-21) and (A-22) are  

a 

1; / (A  - IO) STABLE 2ND MOMENT <(< (A  - 13) STABLE 2ND MOMENT 

Figure A -2, Sufficient Second Moment Stability Boundaries for Equations 
(A-10) and A-13). 

Compare figures A-1 and A-2. The two stability regions in figure A-1 represent 
necessary and sufficient conditions for asymptotic sample stability of equations (A- 10) 
and (A-13). The corresponding sufficient conditions for asymptotic sample stability, 
obtained via the exponential stability of the second moments, a re  indicated in figure A-2. 
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APPENDIX B 

A BYPRODUCT OF THIS STUDY - THE METHOD O F  AVERAGING APPLIED 
TO AN INVERTED PENDULUM WITH A RANDOMLY OSCILLATING SUPPORT. 

The interesting fact that a pendulum, whose base is subjected to a periodic 
displacement, can be stabilized in the inverted position is well known. A natural 
question to ask is can the pendulum be stabilized with a base motion that is some 
type of stochastic process? 

In [24], conditions for stability were found when the base motion was a finite 
sum of cosines with random phases and in [17] it was determined that white noise 
would not stabilize the linearized motion of the pendulum. 

The pendulum's equation of motion, (B-6), is nonlinear with the randomly 
varying base acceleration appearing as a coefficient of the nonlinearity. In the 
absence of the base acceleration, the system is unstable, i. e. , the pendulum falls. 
Methods that a r e  presently available for determining the stochastic stability of non- 
linear systems require the system to be stable in the absence of stochastic coeffi- 
cients. The approach to be used here, the method of averaging [25], does not require 
this assumption. This method is quite general and is therefore applicable to many 
nonlinear dynamic stability problems; thus the analysis presented here is by no 
means limited to the pendulum example. 

The method of averaging approach is as follows. Given a set of nonlinear 
time varying differential equations, one attempts to reduce these to the %tandardTr 
form 

where x and F a re  n vectors and e 
system of equations is formed 

0 is a small parameter. Then an averaged 

X = c F (Z) 
0 

where 

I 
9 

F (t, R, e )  dt lim 1 F (E)= 
0 T - ) =  T (B-3) 

Under certain restrictions on F and the existence of the limit in (B-3), the 
solution of (B-1) and (B-2), starting with the same initial conditions, stay close to 
each other at each t ,  in a time interval proportional to €-lo for G sufficiently small. 
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Thus, i f  particular solutions to the averaged system (B-2) are stable, then at least 
for a finite time, the corresponding solutions of (B-1) will be close to these stable 
solutions. 

Stability over an infinite interval of time is the desired property and results 
of this type have been obtained in the deterministic case when F is assumed to be 
almost periodic in t. This is not true, in general, for stocbastic processes. However, 
analog simulation of the inverted pendulum with a stochastic base motion strongly 
suggests stability for an infinite time interval, 

Assume that the pendulum may be schematically represented as 

f 
0 

0 X 

Figure B-1. Schematic Representation of Inverted Pendulum 

The kinetic, potential, and dissipation functions may be written as 

2 ' 2  .. '2 
2T = m(f - 2 t f q  s i n q  + .t q ) 

V = - m g d ( 1 -  cos q) + m g f  

2 . 2  21) = 2c4, q 

Substituting (B-4) into Lagrange's equation 

(B-4) 

yields 

. .  2 .  2 .  
( m t  q - m t i s i n q )  + 2c.e q - m g t  s i n q  + m t f q c o s q  = O  d 

d t  
- 
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or  .. 
(B- 6) 

.. 2c  f q + m 4 - (T + -B) s i n q  = o t 

To put (B-6) in  the standard form required by the method of averaging we generate 
a transformation with the generalized momentum of Hamilton's mechanics and then 
assume that f is small and rapidly oscillating. 

The generalized momentum is defined by 

where the Lagrangian, L, is 

Hence from (B-7) 
2 .  

p = m(-P,f s inq  + 6 q) 

Rearranging (B-8) gives 

f' 6 =-+- + - s i n q  

Differentiating (B-8) and using (B-6) and (B-9) gives 

6 m 6  

i 
2 c  (91 + - s inq )  s inq )  c o s q  + 6 [ -  - m = m( - t i . s i n q  - t,i (-Ez_ + f t m t  

.e m t  

(B-10) 
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Now assume that f(t) is small and rapidly oscillating in the following sense. Let 

-1 (B-11) 
f(t) = e w ( e  t) 

where e < 
become 

1 and therefore e t corresponds to a "fasttf time. (B-9) and (B-10) 

sin q 
e W( A), 

t * a+ 
2 q =  

m t  
(B-12) 

2 

m 2t  + m t g s i n q  -1 

(B-13) 
sin q) (&ew(s t) cos q + 

e w(e-lt) 
t i, = - m ( L  + 

2 
m d  

-1 d 
d t  Now transform (B-12) and (33-13) into the "fast" time T = e 

6 -  

t. Using - = 

and denoting differentiation with respect to T by primes gives -1 d 
dT 

(B-14) 

2 

m 26 ) + e m t g  s i n q  
W T  2 + p' = - e m  ( sin q)  (tw'(T) cos q + 

(B-15) 
2 t md 

However, we note that these last equations are  in the standard form for the applica- 
tion of the method of averaging. Hence, i f  we assume 

E ( w ' ( T ) \  = o (B-16) 
2 2 

E ( ( w % ) )  1 = 0 

and that w' (T ) is a sample function from an ergodic process so that ensemble expecta- 
tions and time averages can be interchanged, then it follows that 

lim 1 i w' ( s )ds  = 0 
0 

T- 'W T 

(B-17) 

with probability one. 

2 2 i [w ' ( s ) ]  d s  = Q 
lim 2 

0 T-'m T 
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Averaging (B-14) and (B-15) with respect to explicit functions of time (i. e. , 
w' (T ) ) we have using (B-17) 

G' = e P (B-18) 2 
m &  

2 2 
1 2g + 0 c o s q s i n a  + s m t g s i n q  (B-19) -1- 

2 m p - - e m (  
md 

where ?j, 
original time t gives 

are the averaged variables. Converting (B-18) and (B-19) back to the 

(B-2 0) 2 m &  

2 
2 

6 = -m(+ " m + cr cos q s i n  Q + mdg sin 
md 

(B-21) 

Qr in terms of the averaged generalized coordinate q, we have 

o r  

(B-22) 

The averaged equation (B-22) will have stable equilibrium point, ?j = 0, 3 = 0, which 
corresponds to the pendulum in the vertical position, i f  

(B-23) 2 
0 > gd 

The method of averaging states that the solutions to the averaged and original 
equations will be close only for a finite length of time proportional to s-l .  Thus it 
has not been established analytically that the stability conditions (B-11) and (13-23) 
ensure that the original system (B-6) will be stable for all time. However, the 
equations (B-12), (B-13) were simulated on an EAI-221 analog computer to see if 
they could in fact be stable under the conditions (B-11) and (B-23). Roughly speaking 
these conditions imply that the pendulum base amplitude should be small and have a 
power spectral density consisting only of "high" frequencies and that the variance of 
the base velocity should be sufficiently large. 
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The parameters used in (B-12) and (B-13) were chosen for simplicity as  

m = 1.0 lb seca/ft 

.e = 1.0 f t  

g = 1.0 ft/sec2 

q(o) = 0.0 rad 

p(o) = 0.01 f t  lb sec. 

This results in a small amplitude pendulum natural frequency in the down 
position of 1 rad/sec. 
Gaussian noise generator and then filtered in such a manner as to eliminate the 
frequency content of f ( t )  in the range 0-25 rad/sec. Approximately fifty sample 
solutions were obtained for different damping coefficients c and values of o2 = 

E { [ f(t)] 21. The six sample solutions shown in figures (B-2) and (B-3) were con- 
sidered to be typical of those recorded. In all sample solutions recorded for c = 0.0,  
the undamped pendulum fell. Conversely, for c = 0 . 1  all sample solutions were 
stable. * For the intermediate damping values c = 0.01 and c = 0.02, over the finite 
time intervals during which the sample solutions were recorded, there were stable 
and unstable sample solutions. 

The base velocity i(t) was obtained from an Elgenco 311A 

Some conclusions can be made from the analog computer results. By com- 
paring figures (B-2) and (B-3) we see that increasing the variance of the noise 02 
tends to increase the average frequency of the pendulum oscillation. The I ?  stability'? 
criterion, (B-11) and (B-23), obtained from the method of averaging, is independent 
of the damping coefficient c; it is obvious, however, from figures (B-2) and (€3-3) 
that the stability is dependent on damping. 

To illustrate the fact that the averaged equations remain close to the original 
equations for a finite interval of time, the averaged equations (B-20) and (B-21) were 
simulated on the analog computer simultaneously with (B-12) and (B-13). The 
parameters used in (B-12), (B-13), (B-20), and (B-21) were identical to those above 
with c = 0.01 and 0 = 4.18. The results are shown in figure (B-4). 2 

*Obviously, infinite time stability of stochastic systems can not be proved via analog 
simulation. However, the form of the sample solution corresponding to c = 0 . 1  shown 
in Figure (B-2) strongly suggests infinite time stability. 
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Figure E%-3. Sample Solutions of (B-12) and (B-13) for a2 = 4.18 and 
Various Damping Coefficients c and a Typical Noise 
Sample i(t). 
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Figure B-4. Sample Solution of Equations (B-12) and (B-13) and the 
Averaged Equations (B-20) and (B-21) for O 2  = 4.18  and 
c = 0.01. 
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